Hepatitis C: Making an Impact in Our Community Health Centers

Jim Morrill, MD, PhD
Massachusetts General Hospital
MGH Charlestown HealthCare Center

Dan Church, MPH
Massachusetts Department of Public Health
Bureau of Infectious Disease
Objectives

- Provide an overview and update on HCV infection
 - Clinical aspects of HCV
 - Epidemiology
 - Transmission
 - Screening
 - Care and treatment
 - Resources
Viral Hepatitis

- Hepatitis A Virus (HAV, fecal-oral transmission, vaccine available)
- Hepatitis B Virus (HBV, blood-borne, vaccine available)
- Hepatitis C Virus (HCV, blood-borne)
- Hepatitis D Virus – (blood-borne, only causes problems for people infected with HBV)
- Hepatitis E Virus (fecal-oral, occurs rarely in U.S.)
Case

- 65 yo African-American real estate lawyer presents for physical, with no complaints.
- H/o HTN, appendectomy age 13, cholecystectomy age 25 c/b hemorrhage
- Remote h/o MJ use; no h/o IVDU, cocaine, unsupervised medication use
- Divorced, sexually active with one new F partner, total of 5 F lifetime sexual partners
- Pt requests STD screening, and you send HIV, HBV, syphilis, and HCV tests
- HCV antibody testing comes back positive

- What is the clinical significance of Hepatitis C?
- What further testing is indicated?
- What is the natural history of Hepatitis C infection?
Hepatitis C: Clinical Significance

- 3.9 million in U.S. with positive antibody
- Most common cause of end-stage liver disease and liver cancer
- Acute infection usually asymptomatic, and usually leads to chronic infection; less than half of those infected are aware of being infected
- Bulk of infected patients (>2/3) born between 1945 and 1965, and contracted HCV more than two decades ago
- 20-30 year time course to development of cirrhosis and its complications
- HCV-related mortality rising (~15,000/yr in 2007) and has now surpassed HIV-related mortality

Mortality trends: HIV, HCV, HBV

Workup of Hepatitis C

- **Diagnose and characterize infection, predict treatment response:**
 - HCV Antibody
 - HCV RNA (viral load)
 - HCV genotype
 - HIV, HBV, HAV serologies
 - Lipids, blood sugar, BMI

- **Assess for HCV-related disease:**
 - ALT
 - Bilirubin, PT, and Albumin
 - RUQ ultrasound
 - Liver biopsy or non-invasive alternative (e.g., HCV Fibrosure)
Natural History of Hepatitis C

- **Acute infection**
 - Ab+ or Ab-, VL+, ALT↑↑
 - 2-12 wk incubation period
 - 80% asymptomatic

- **Chronic infection (75-85%)**
 - Ab+, VL+, ALT↑

- **Viral clearance (15-25%)**
 - Ab+, VL-, ALTnl

- **Cirrhosis (30%/30yrs)**
 - Decompensation or Hepatocellular carcinoma (1-4% per year)

More common with:
- Young patients
- Females
- Icteric acute infection (occurs in 15-20%)

Promoted by:
- Alcohol use
- Older age, male gender
- HBV or HIV infection
- High BMI, DM, or fatty liver
HCV Prevalence

- **NHANES (1999-2008)**
 - General US Population: 1.5%
 - Gender: ~2/3 of all cases are male
 - Born between 1945-1965: 3.25%
 - Non-Hispanic black males: 8%
 - Non-Hispanic white males: 4%
 - Mexican-American males: 3.4%

- **Injection Drug Users (IDUs):**
 - 70% - 90% (Alter, 1998; Hagan, 2008)

- **Incarcerated:**
 - 12% - 35% (Boutwell, et al, 2005)
HCV Transmission

- Bloodborne pathogen
- Asymptomatic still potentially infectious
- Most people infected through:
 - Injection drug use (sharing drug injection equipment)
 - Blood transfusions/clotting factors/organ transplants prior to 1992
 - Chronic hemodialysis
 - Sexual transmission - inefficient but does occur
 - Vertical transmission – 4-7% of births to infected mothers (20% in HIV/HCV co-infected)
Possible Transmission Risks

- Occupational exposures
 - Risk from needlestick:
 - HIV=3/1000 HCV=2/100 HBV=3/10
 - Prevalence of HCV in health care workers is the same as the general population
- Sharing personal/household items with blood
- Intranasal drug use
- Tattoo/body piercing: nonsterile practices
HCV – Injection Drug Users (IDU)

- IDU accounts for 68% of all new infections (CDC)
- As many as 32% of IDUs are infected with HCV within 1 year of first injecting; 53% within 5 years (Hagan, et al, 2008)
- Sharing of syringes, cookers, cottons, rinse water, etc. from injection drug use is the greatest risk for HCV transmission
- HCV infection CAN be prevented among injection drug users
 - Access to sterile injection equipment and multi-component prevention programs is critical
Sexual Transmission of HCV

- Occurs, but efficiency is low
- Low prevalence (0.6-1.8%) among monogamous long-term partners (Terrault, et al, 2012)
- May account for 15-20% of acute and chronic infections in the United States (CDC)
- Increased transmission among HIV+ MSM (CDC, 2011)
CDC Risk-based HCV Screening Recommendations (1998)

- Ever injected illicit drugs
- Received a transfusion or blood products before July 1992
- Received clotting factor prior to 1988
- Children >18 months born to HCV-positive women
- Ever on hemodialysis
- HIV-positive
- Healthcare, emergency, public safety workers after needlestick/mucosal exposures to HCV-positive blood
Changes to HCV Screening Recommendations (2012)

- Move to focus on age-based screening
 - 2/3 of HCV cases among “baby-boomer” population

- Recommendation: One-time HCV screening for all people born between 1945-1965
 - Alcohol use screening and treatment for HCV+

- Risk-based screening still important
Why test this age cohort?

Annual age-adjusted mortality rates from hepatitis B and hepatitis C virus and HIV infections listed as causes of death in the United States between 1999 and 2007

Ly, et al, 2012
HCV among youth in Massachusetts 2007-2011

- Starting in 2007 an increase of newly diagnosed HCV infection has been noted among youth ages 15-25
- Between 2002 and 2011, an increase of 62 to 132 cases per 100,000 population was reported in this age group
- Data suggest that the increase is due to youth injecting drugs (mostly heroin)
- Other jurisdictions have also seen this trend (CT, HI, KY, ME, MN, NY, PA and others)
MMWR: Rates of newly reported cases of hepatitis C virus infection (confirmed and probable) among persons aged 15--24 years and among all other age groups --- Massachusetts, 2002--2009
MMWR: Age distribution of newly reported confirmed cases of hepatitis C virus infection --- Massachusetts, 2002 and 2009

* N = 6,281; excludes 35 cases with missing age or sex information.
† N = 3,904; excludes 346 cases with missing age or sex information.

Source: Onofrey et al MMWR: May 6, 2011 / 60(17);537-541
Treatment regimens

<table>
<thead>
<tr>
<th>HCV Genotype</th>
<th>Treatment Regimen</th>
<th>Success (SVR*) rate</th>
<th>Side-effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peginterferon SC qwk • Ribavirin PO BID • 12 week “boost” with a Direct Acting Antiviral (DAA): NS3 protease inhibitor (Telaprevir or Boceprevir) Duration: 24-48 weeks depending on early response</td>
<td>62-80%</td>
<td>• Flu-like sx • Mood changes • Pancytopenia • Autoimmunity • Hemolytic anemia • Teratogenicity For protease inhibitor regimens: • More severe anemia • Pruritus and rash • Dysguesia</td>
</tr>
<tr>
<td>2 and 3</td>
<td>Peginterferon SC qwk • Ribavirin PO QD Duration: 24 weeks</td>
<td>78-82%</td>
<td></td>
</tr>
</tbody>
</table>

* Sustained Virologic Response = negative HCV viral load 24 weeks after treatment

And coming very soon:

More DAAs:
- More protease inhibitors
- NS5A inhibitors
- Nucleotide polymerase inhibitors (e.g., Sofosbuvir)

Interferon-free regimens?

Human pharmacogenetics
- IL28B polymorphisms
Factors in favor of treatment:
- HCV VL positive
- Histologic evidence of chronic hepatitis with significant fibrosis
- Compensated liver disease
- Acceptable baseline hematologic and biochemical indices (e.g., Hgb > 12, GFR > 50)
- Willing to be treated and able to adhere to requirements

Contraindications to treatment:
- Uncontrolled depression
- Ongoing EtOH use
- Active autoimmune disease
- Pregnancy or risk thereof
- Severe comorbid medical disease that would make treatment dangerous (e.g., CAD, seizure d/o)
- Known Hypersensitivity to one or more of the anti-HCV medications

When decision to treat should be individualized:
- Failed previous treatment
- Current active illicit drug users
- Quasi-stable psychiatric disease
- Unstable social situation / housing / follow-up
- Decompensated cirrhosis
- Genotype 2,3 (given promise of DAAs)?
Barriers to Treatment

Reasons for non-treatment

Referral and treatment rates

- Referred for treatment: 88%
- Pre-treatment visit: 72%
- Treated: 37%
- Completed treatment: 15%
- Sustained viral response: 9%

Young adults (20-39)
- No identified reason: 12%
- Active substance abuse: 21%
- Patient preference: 13%
- Waiting for new tx: 6%
- Medpsych comorbidity: 4%
- Unstable housing: 2%
- Active etoh use: 2%

Older adults (40+)
- No identified reason: 15%
- Medpsych comorbidity: 15%
- Loss to follow up: 23%
- Active substance abuse: 5%
- Active etoh use: 2%
- Min fibrosis: 12%
- Patient preference: 14%
- Waiting for new tx: 14%

** denotes significant differences from the other group.
Harm Reduction

- HAV and HBV vaccination
- EtOH cessation
- Avoidance of hepatotoxic medications or OTC products
- Hepatitis C education
- Counseling about transmission
- Referral to psychiatric or addiction treatment when appropriate
- Referral to Hepatology for cirrhotics
- Collaboration w/ Hepatology on cirrhosis harm reduction (e.g., liver cancer screening, fluid mgmt)
HCV Harm Reduction for IDUs

To reduce spread of HCV, IDUs should:

- Be provided information on drug treatment options
- Be informed about existing needle exchange programs and pharmacy access
- Have access to harm reduction education
 - Clean works
 - Safe injection practices
 - Overdose prevention
 - Opioid replacement therapy
Roles of Primary Care

Harm reduction:
- Hepatitis A and B immunization
- Alcohol cessation
- Avoidance of hepatotoxic meds
- Recognition and management of comorbid conditions

Co-management of advanced liver disease:
- Co-management of ascites, encephalopathy, and varices with Hepatology
- Assisting w/ HCC screening

Identification and Characterization of the infection

Management of barriers to antiviral treatment
- Identification and removal of surmountable barriers
- Referral for antiviral treatment when appropriate

Primary Care Team
Telemedicine project enabling HCV treatment by PCPs at 21 rural sites in New Mexico

- Key personnel identified at each site
- Development of “knowledge networks” for review of cases, dissemination of best practices, and community-building
- Prospective comparison of SVR rates between 261 patients treated locally and 146 patients treated at the University of New Mexico
- Equivalent success rates seen for all patients (58.2% at ECHO sites vs. 57.5% at UNM)
- Lower side-effect and dropout rates at ECHO sites
On-site, Team-based HCV Care

Community Education/Screening Team

Hospital-Community Connections

“Knowledge Networking” w/ specialists

Feedback to PCPs

Health Center Registries

MGH Community Hepatitis C Program
Resources: Provider Education

- CDC http://www.cdc.gov/hepatitis/
- Hepatitis Web Study:
 http://depts.washington.edu/hepstudy/
- National Training Center for Integrated Hepatitis, HIV and STD Prevention Services
 www.knowhepatitis.org
- Treatment Action Group
 www.treatmentactiongroup.org/hepatitis
- Caring Ambassadors Program: Hepatitis C
 http://www.hepcchallenge.org/index.htm
Resources: Patient Education

 - “Know Hepatitis” campaign
- Treatment Action Group www.treatmentactiongroup.org/hepatitis
Resources: Policy

- US Department of Health and Human Services Viral Hepatitis Action Plan (2011)
- Institute of Medicine Report on Hepatitis and Liver Cancer (2010)
 http://www.cdc.gov/hepatitis/IOMnews.htm
- National Viral Hepatitis Roundtable www.nvhr.org
Speaker Contact Information

Jim Morrill, MD, PhD
MGH Charlestown HealthCare Center
73 High St., Charlestown, MA 02129
617-724-8135
jmorrill@partners.org

Dan Church, MPH
William A Hinton State Laboratory
305 South St. Jamaica Plain, MA 02130
617-983-6830
Daniel.church@state.ma.us